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AN ASSESSMENT OF THERMODYNAMIC 

EQUILIBRIUM DATA 
CONSISTENCY TESTS FOR VAPOR-LIQUID 

JAIME WISNIAK' .  ALEXANDER APELBLAT and 
HUGO SEGURA* 

Consistene) testa are techniques t l i i i t  u l low.  i n  priiiciplc. the ilssessnient ol' experimental 
vapor-liquid equilihrium data on the basis of the Gihhb-Duhem equation. Much 
empiricism and arbitrariness is frequently ohserved i n  llic analysis and application of 
consisiency tests. ii situation that may question their usetulness. Perfect data satistj 
exactly the Gihhs-Duhem relation. hut ncceptablc data obey it within a tolerable limits 
( c ~ o / i . s i . r r ~ , r i c ~ ~ .  c~iic,rirr) which does not give a unique ;insuer. regarding the quality o f  the 
data. when dilfcrent consistency procedure5 are uaed. A5 with any approximation. 
application ofconsi\teiicy tert\ requires rigour. rcasonahle asbumptions und models. and 
an examination of the data and results o f  the test. I n  this w o r k .  ;I act o f  guidelines that 
allow a critical interpretation o f  consibtenc) ;inalqsis ir propo5ed and special attention is 
given to the point-to-point test which is entenstvel) used today in data ecaluation. 

INTRODL'CTION 

'To whom corrcapondencc ~ h o u l d  he addressed. 
*Permaiient iiddrcss. Ikpartrncni ol' Cheinicnl tnpineering. Univcrsidad de Concep- 

ciiin. Concepciiin. Cliile. 
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2 J. WISNIAK et al. 

their reproducibility and matching with any thermodynamical relation is 
assumed. 

Since the first papers of Herington [ I ,  2, 31 and Redlich and Kister 
[4] on binary isothermal and isobaric area tests, many papers have 
been written about consistency. Some of them have proposed new 
consistency tests, as is the case of the work of McDermott and Ellis [5] 
for the treatment of multicomponent systems using the area test; the 
work of Van Ness et al. [6] on point-to-point consistency, based on 
excess models and bubble-point pressure calculations, the papers of 
Christiansen and Fredenslund [7] and Fredenslund et al. [8], the work 
of Kojima et al. [9] For an integrated method of point-to-point, 
integral and infinite dilution consistency (PAI), the work of Wisniak 
[lo] on the L-W test for the analysis of isobaric consistency of binary 
and multicomponent systems, and the recent revision of Van Ness [I  I ]  
where a direct point-to-point test of consistency is analyzed and 
proposed. Other papers are devoted to the critical analysis of the 
usefulness of consistency tests, such as the works of Samuels [12], 
Samuels et al. [13], and Van Ness et al. [6] on the critical revision of 
integral consistency, and more recently, the paper of Wisniak [I41 
where the assumptions of the isobaric integral test of Herington are 
revised in-depth. 

Thus our motivation for writing a new paper on consistency raises a 
good question that needs a good answer. Presently, the majority of 
publications regarding VLE data are complemented with a consistency 
analysis as a standard section of the paper but, surprisingly, in spite of 
the rigour of the definition given above, few or vague details about this 
important tool are generally given and no major discussion 
accompanies the results. We can observe that many points regarding 
consistency tests are not clear, probably due to the non clear-cut 
present state of the problem and to the overvaluation of empirical 
consistency criteria: the assumptions, weakness and the validity range 
of some well established consistency tests are not completely under- 
stood and in many cases, the analysis is incomplete or based on partial 
information. In addition, the information that allows the reproduction 
of the consistency analysis is not always reported and certainly, for 
some good reasons, the user of the data would wish to test himself the 
data. Considering that consistency tests constitute a kind of 
certification of published data this tendency is worrisome, because 
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TESTS OF VAPOR-LIQUID EQUILIBRIUM DATA 3 

the usefulness of this thermodynamic tool becomes unclear and, in a 
way, a misdirecting and routine task whose value is perfectly refutable. 
As pointed by Van Ness [ll], the thermodynamic treatment of binary 
VLE is a topic more complex and less widely understood than might be 
supposed. We believe that the best opportunity for a consistency 
analysis occurs when the researcher ends the experimental work and 
wishes to evaluate seriously the measured data, nobody rather than he 
(or she) knows better the conditions which accomplish the experiment, 
nor has a better access to the data of the system in question. Hence, we 
postulate that consistency analysis is a task of experimentalists, who 
can give an interpretative and quantitative approach to their results 
and can tell us something objective about the quality of the 
measurements. 

In this work we do not propose a new consistency test because, as 
pointed by Prausnitz et al. [ 151, a gram of good data is worth more than 
a ton of consistency tests. However, considering the limited present 
knowledge about the behavior of the liquid phase, it is not so easy to 
judge which data are good but, according to our experience on VLE 
data treatment, it seems possible to judge which data are bad, which 
data needs to be better explained, or which experimental measurements 
deserve repetition. In addition, many consistency tests with a common 
basis (the Gibbs-Duhem equation) require data which usually are not 
available, or whose acquisition exceeds the capabilities of the 
experimental equipment or finding them in the literature. The lack of 
data not related to the VLE in question, such as accurate virial 
coejicients and excess enthalpies, is the main limitation of any 
consistency procedure. Our objective here is to provide some guidelines 
that allow one to pass judgement about the quality of the data and to 
show how revisited consistency tools can be used in the right way, 
considering their limitations, for the evaluation of experimental data. 

THEORY 

‘The Gibbs-Duhem Equation 

According to the Gibbs-Duhem equation, any extensive molar 
thermodynamic property of a given phase, such as the Gibbs and 
Helmholtz energies, the enthalpy, and molar volume, must satisfy the 
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4 J. WISNIAK C I  ul. 

following differential relation [16] 

In Eq. ( I )  M is a generic molar property, “z;’* the molar fraction of 
component i in the phase under consideration, g the pertinent set of 
compositions, C the number of components, and Mi is the partial 
contribution of component i to h. Equation ( I ) ,  a pure mathematical 
result due to the fact that extensive properties are homogeneous 
functions of the first degree in relation to the mass of the system, is one 
of the most important relations of the thermodynamics of solutions. 
Provided that a relationship of the form M= fi( T,  P. ;) exists, Eq. ( 1 )  
establishes an analytical relation among (C+ 2) variables (i.e., T, 
P. Mi) having (C+ 1 )  degrees of freedom. Mathematically Eq. ( I )  
couples the variables of the set ( T ,  P, Mi): thus, if all the elements of 
this set are known and have a p P r / c c t  thermodynamical meaning, then 
Eq. ( I )  is exactly satisfied yielding the main hypothesis of consistency. 

The Gibbs-Duhem equation is a thermodynamic relation in the 
same sense that the Maxwell relations are. I t  allows to deduce certain 
thermodynamical properties when only partial information is avail- 
able and when equilibrium slates are assumed. An excellent illustration 
of this kind relation can be found in a paper by Kohler et al. [ 171 where 
partial experimental information on the liquid phase activity 
coefficients of the system acetic acid + triethylamine system is used 
for a theoretical calculation of the associative interactions present. 
Another interesting theoretical application is the displacement theory 
described by Malesinski [ I  81, where the Gibbs-Duhem equation is used 
to represent the evolution of phase equilibrium for varying conditions 
of pressure and temperature. 

From a practical point of view, the ditferential form of Eq. ( 1 )  as the 

analytical function fi = fi( T, P.  ;) is not known.  Although i t  can be 
derived from molecular crh itiitio considerations for few and idealized 
systems with the aid of statistical mechanics, in most cases, fi and its 
derivatives must be considered as utiktio~~w un(rlj~tictrl, fiitictions or strite 

proper/k.s  which can be correlated by means of empirical or 

b, r i ~ ~ ~  . ’ .  for a consistency test is unfortunate because, usually, the 
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TESTS OF VAPOR-LIQUID EQUILIBRIUM DATA 5 

semiempirical models, such as equations of state (EOS) and excess 
models (G'). 

Depending on the nature of j 4 ,  some 01' its values (di .scrctc point.s) 
and the derivatives required in Eq. ( I )  can be obtained from direct o r  
indirect rieterminrrtion. with in e.Ypi>rinien tu1 iww, for va ri o us condi - 
tions of temperature, pressure and  composition. This experimental set 
of h may be qualified as satisfxtory if the following relation is 
satisfied 

Nevertheless, it should be noted that Eq. (2) is insufficient to guarantee 
the quality of the experimental data. As a simple illustration of this let 
us assume that the property A? has been measured at constant 
temperature and  pressure with noncalibrated instrumentation. 
Although we can measure n;/ as  a function of the composition with 
high precision in such a way t h a t  Eq. (2)  is satisfied with dTexpt = 0 
and dPexpt  = 0. the obtained value will not correspond to the rrs.sunic.tl 
temperature and pressure values. In addition, fluctuations of fixed 
variables, o r  nonequilihrium stales, that escape our control even in 
highly accurate experiments. can produce cancellation of errors in an  
unpredictable way. From this point of view, Eq. (2) is more 
informative when i t  is not satisfied, o r  equivalently. i t  is ii ncwssary 
hut not (1 sufficient condition o/' consistencj* when satisfied by 
experimental data.  This role is usually attributed to simplified 
consistency test versions derived li-om the Gibbs-Duhem equation; 
but as mentioned here, the origin of a neccsscrrj. hirt not sufficient 
condition is a consequence of the application of Eq. ( I )  to i ~ . ~ p o r i t i i e n t d  
data constrained to t t m ( i t i ( .  mid r w d o m  errors. The practical aim of 
a consistency test, therefore, is the detection of a significant systematic 
error in the measurements. Another alternative is that fi be given by a 
parameter-dependent empirical model: usually, empirical correlations 
in thermodynamics must satisfy Eq. ( 1  ) in order to be considered 
acceptable. In  this sense, Eq. ( I )  can be considered useful for model 
testing, although it should be pointed out that the Gibbs-Duhem 
equation is unable to detect some model pitfalls. a good example being 
the Mich~~lsen-Ki.stenmaclzer putholog!~ [ 191 observed in some models of 
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6 J .  WISNIAK ef al. 

mixing rules for cubic equations of state, such as that of Panagioto- 
poulos and Reid [20]. 

Consistency Tests for VLE Data 

When considering VLE the excess Gibbs energy, GE,  can be evaluated 
from measurable (T,  P, x ,  y )  data using activity coefficient relations. 
Replacing $f by G E / R T  in Eq. (1) yields the following well-known 
relation [ 161 

C AV -- AH d T +  - dP - C xid ln7i = 0 
i= I R T 2  RT (3) 

where A H  and A F  are the molar enthalpy 
the liquid phase and 

and volume of mixing of 

(4) 

Combining Eqs. (3) and (4) yields 

AF C C 
- x l n y i d x i  = x x i d l n y i  = -% d T + - d P  ( 5 )  RT RT i= I i= I 

Application to a binary system gives 

A H  AV 
- - d T + - d P  R T 2  RT 

Simultaneous solution of Eqs. (4) and (6) yields 

lnyl = - + x 2  A H  dT A v d P  ."(")I 
(7) 

RT RT2dxl RTdxl dxl RT 
,AH dT A V d P  d GE +- - lny2 = - - x I  -- - -~ 

G E  

RT [ RT2dxl  RTdxl dxl ( R T ) ]  

Equations (5 ) ,  (6)  and (7) constitute the basis of all the thermodynamic 
consistency tests currently used, which are analyzed below. 
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TESTS OF VAPOR-LIQUID EQUILIBRIUM DATA I 

1. Point-to-Point Test 

The point-to-point test, or slope test, corresponds to a direct 
application of Eq. (3) to experimental binary data in the form 

where the pressure compositional derivative or the temperature 
compositional derivative are neglected for isobaric or isothermal data 
respectively. The total derivatives required in Eq. (8) must be 
determined from experimental [T, P, y1,y2] data using a graphical or 
an equivalent numerical method; experimental volume and heat of 
mixing data are supposed to be available. Equation (8) constitutes the 
most rigorous thermodynamic test because no empirical model nor 
correlation is assumed, an exception being the approximations made 
in the calculation of activity coefficients. In addition, each experi- 
mental point can be analyzed independently from the rest, hence the 
test can reject particularly bad information from a set of data. In spite 
of its rigor, Eq. (8) has never found a practical application in 
consistency analysis because the determination of derivatives from 
experimental data is cumbersome and inaccurate. Thus inconsistency, 
or even consistency, can be achieved by experimental data having a 
systematic error. Nevertheless, application of Eq. (8) to the simple case 
of constant temperature and pressure 

yields the following important characteristics of the activity coefficient 
curves: 

the slope of the activity coefficient curve tends to zero as the 
concentration approaches pure component, this is the basis of the 
Lewis and Randall reference state, which does not depend on the 
conditions being isobaric or isothermal because mixing properties 
tend to zero at infinite dilution. 
in binary systems activity coefficients will yield stationary points at 
the same composition. If lnyl is maximum then In72 must be 
minimum and conversely. If one of the restrictions of constant 
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8 J. WlSNlAK ('I ril  

pressure or constant temperature is removed then the extreme 
values will occur at compositions slightly different one from the 
other. 

These two simple results, schematically shown in Figures I ,  are 
illustrated in many elementary thermodynamic textbooks and 
constitute a rudimentary test of consistency. Figure 1.a shows the 
usual behavior of activity coefficients in binary systems with positive 
deviations from ideality, it can be seen that each activity coefficient 
curves becomes tangent to the ideal solution line (Iny = 0) at infinite 
dilution. Figure lb  shows a case where the activity coefficients achieve 
stationary points with opposite curvature. An incorrect behavior of 

0.0 0.2 0.4 0.6 0.8 1 0  

(4 XI 

FIGURE 1 [ I ]  Correct and incorrect dependency of activity coefficients on 
composition 
a. correct stationary points of activity Coefficients. 
b. correct slope of activity coefficients in the concentrated range, tangency to  the zero 

c. incorrect dependence of activity coefficients: "12 shows a minimum not reflected in 71 

d. activity coefficients calculated from the data reported by Costa-Lopez rr a/. [34] 

line is observed when 21 + 1. 

and the curve for ~2 is not tangent to the zero line in 2 1  = 0. 
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TESTS OF VAPOR-LIQUID E Q C l l L l B R l U M  DATA 

b,, Iny, 

i 
0 0  0 2  0 4  0 6  0 8  1 .o 

XI 

9 

0 0  0.2 0.4 0.6 0.8 1 .o 
(a XI 

FIGURE I (Continued). 
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10 J .  WISNIAK el al. 

0.6 

0.5 

0.4 

0.3 

r-" = 0.2 - * 
r - 

0.1 

0.0 

-0.1 

-0.2 

/ 

. ... 

-. 

I I I I 

0.0 0.2 0.4 0.6 0.8 1 .o 

XI 

FIGURE I (Continued). 

activity coefficients is shown in Figure I .c were y2(x1) does not become 
tangent to the ideal solution line when x2 + I and the minimum 
observed in 7 2  is not reflected by a maximum point of 71. It should be 
pointed that some published experimental data, qualified as consistent, 
do not match these simple rules, as illustrated in Figure 1.d for the 
system propyl butanoate (1)- I-propanol (2) at 101.3 kPa [21]. The 
behavior of yl(x1) is incorrect when the mixture is concentrated in 
propyl butanoate and y(xl) shows a minimum not clearly reflected in 
the tendency of yz(x1). In spite of these anomalies the experimental 
results for this system have been declared consistent by the test of 
Fredenslund et al. [8]. Hence, an important point to be learned here is 
the necessity to plot and tabulate the activity coefficients as a first 
symptom of the consistency of the data. Although the slope test is not 
easily applicable, it can help in the visual detection of pitfalls and 
outliers. 
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TESTS OF VAPOR-LIQUID EQUILIBRIUM DATA I 1  

2. Area Tests 

Area tests were independently proposed by Herington [ l ]  and Redlich 
and Kister [4] for the assessment of VLE data. Basically, this kind of 
tests constituted the first systematic approach to the consistency 
problem and continues to be extensively used and popular until today, 
probably due to their simplicity. General area tests are derived from an 
integration of the relation of Gibbs-Duhem given by Eq. ( 6 )  

Generally, integration is extended to the full composition range, 
yielding the more familiar relation 

The left-hand side of Eq. (lO.b) represents the net area of ln[71/-yz], as 
a function of the composition (Fig. 2), given by IS1 - SzJ, where both 
areas are considered positive. This integral is easily calculated by 
smoothing the experimental ln[yl /y2] data with an appropriate 
correlation. The first term on the right-hand side of Eq. (lO.b) 
corresponds to the contribution of the heat effect, and the integral 
must be calculated over the complete trajectory of bubble-point 
temperatures. The second term corresponds to the contribution of the 
volume of mixing, and the integral must be evaluated over the 
complete trajectory of bubble-point pressures. A rigorous treatment of 
VLE data with Eq. (I0.b) requires mixing volumes and enthalpies as a 
function of the composition, temperature and pressure; in practice, 
these information is rarely available, hence some approximations are 
needed for the practical application of Eq. (lO.b) to isothermal and 
isobaric systems. 

For constant temperature data, Eq. (lO.b) yields 
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I2 J .  WISNIAK el cil 

I I I 

0.0 0.2 0.4 0.6 0.8 1 .o 
XI 

FIGURE 2 Typical plots for area tests. 

The second integral in Eq. ( 1  1) reflects the influence of the volume of 
mixing of the liquid phase, it exhibits a weak dependence on pressure 
and its numerical value is usually negligible when compared to the 
value of the integral on the left-hand side [22]. The consistency relation 
is given by the following relation 

where D is an acceptance criterion. On the basis of the scarce 
experimental information available at his time, Herington [2] proposed 
that a system is probably consistent iJ' D <: 10; with the improved 
instrumental and analytical techniques available today it seems 
appropriate to adopt the more stringent criteria D 5 2 [12], [15]. 
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TESTS OF VAPOR-LIQUID EQUlLIBRIUM DATA 13 

The isobaric version of the area test is given by 

In this case the right-hand side term cannot be neglected [22]. Proper 
use of Eq. (13) requires the availability of heats of mixing a s  a function 
of composition and temperature. In a few cases this information is 
available in the DECHEMA Chemistry Data Series [XI. In order to 
obviate this limitation Herington [3] developed the following 
approximation for the integral on the right-hand side of  Eq. ( I ? )  

Indexes max and min represent the maximum and the minimum values 
that can be acquired by the pertinent variable. Maximum and 
minimum temperatures must consider all the temperature range 
covered by the system, including azeotropes, if any. From the limited 
experimental information available in his time, Herington [2] esti- 
mated that ~AHl , , . ,y /G~~, ,~  would never exceed the value 3 so that 

(13 .c )  

For the smoothing of the In[; I /- ,>I experimental I'unction, the use of a 
Hexible G" model. such as the Kedlich- Kistcr expansion. is always 
tempting. However, i t  should be pointed o u t  that when the parameters 
of the GE model are temperature independent, Eq. (14.21) will always 
yields ;I roro wliw. hence the use o f  G'.. models ;IS possible correlation 
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14 J.  WISNIAK er al. 

functions of In[yl /y2] must be avoided. The Herington area test is one 
of the consistency procedures used currently by the DECHEMA 
Chemistry Data Series [24] for the assessment of VLE data with the 
recommendations and approximations proposed by Herington [2]. 

The main advantages of the area test are its simplicity and 
independence of any kind of empirical model, but the area test is a 
gross examination when applied to a VLE data set as a whole [ l  11 and 
many inconsistent systems can satisfy it. This weakness is implicitly 
stated in the original papers of Herington [2] where a system is not 
declared as consistent but as probably consistent when the acceptance 
criteria is achieved. The principal limitation of the area test comes 
from its geometrical origin, because many drastically different 
ln[yl /y2] experimental curves can have the same, or approximately 
the same, net area. In addition, the integration procedure required by 
Eqs. (12) and (14.a) covers the whole concentration range, but activity 
coefficients at  infinite dilution, which generally are not determined 
experimentally, must be extrapolated inducing important changes in 
the net area. As pointed out by Van Ness et al. [6], the In[y1/~2] 
function depends weakly on pressure, hence this important equili- 
brium variable is not assessed by area tests. 

The isobaric consistency test must be used with precautions when 
heat of mixing data are not available because the test can be extremely 
stringent or generous depending on the system under consideration. 
For example, a perfectly isobaric and athermic system can be easily 
rejected by the test due to the approximation expressed by Eq. (14.b) 
where it is supposed that all systems have a nonnegligible heat of 
mixing. Wisniak [14] has shown that some basic assumptions made by 
Herington are wrong: (a) The value of the parameter ~Afi , , ,ax/G~ax~ 
can go as high as 28, exceeding by far the upper limit of 3 assumed by 
Herington, (b) The availability of better instrumentation suggests 
setting the upper limit of D as 5 2 and not 5 10 as assumed by 
Herington, so that in the best case Eq. (15) should actually read 
ID - JI < 2. In addition, Wisniak has shown that certain algebraic 
approximations assumed by Herington are also inappropriate. In 
other words, the Herington test, although used extensively in the 
literature can be unreliable. 

Local tests are a subcategory of integral tests, in this case integration 
is performed over part of the compositional range; it can proceed, for 
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TESTS OF VAPOR-LIQUID EQUILIBRIUM D A T A  15 

example, between neighbouring experimental points. In this case Eq. 
(1 0.a) becomes 

McDermott and Ellis [ 5 ]  proposed the trapezoidal rule between 
adjacent points for the integration of Eq. (16). For a binary isothermal 
system where the contribution of volume of mixing can be neglected 
Eq. (16) can be written 

In principle, Eq. ( 1  7) constitutes another consistency test, reduced to a 
pair of adjacent experimental compositions, where all the experimental 
points contribute to the global integration with the same weight. 
Equation (17) can be used for the detection of outliers and can give 
more reliability to the area test because, as discussed by Van Ness and 
Mrazek [25] ,  every system that achieves local consistency achieves 
integral consistency, but the reverse is not necessarily true. A relation 
similar to Eq. (17) can be deduced for isobaric systems, but local 
consistency analysis is not recommended when information regarding 
heat of mixing is not available. 

3. Consistency Tests Based on VLE Calculations 

The fundamental advantages of consistency tests based on VLE 
calculations is that they are directly related to measurable properties of 
the equilibrium, i.e., compositions, temperature and pressure, vari- 
ables for which the maximal experimental error is controlled or well 
known. On the other hand, this test allows exploring the possibility of 
data reduction using well established G" models. This test will 
discussed here in more detail due to its extensive use in data 
evaluation. Considering the relations of the y - 0 approach to the 
VLE problem we have [I61 
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16 J. WISNIAK CI  ul 

where 0; is the fugacity coefficient and d;  is the Poynting factor defined 
as 

The following relation for the bubble-point pressure [26] can be 
obtained by combining Eqs. (7) and (18) 

where @ is a pressure correction defined as 

Equation (20) constitutes the main relation for the different versions of 
consistency test based on bubble-point pressure calculations, called 
also rr.sirhiu1 mrthocis. The test of Van Ness ef u/.  [6] and the point-to- 
point version of Fredenslund i ~ t  al. [8] for isothermal data, are typical 
examples of the application of Eq. (20) together with Eq. (7). The 
method of consistency analysis based on bubble-point pressure 
calculations was originally suggested by Van Ness et al. [6] for the 
treatment of isothermtrl data, a case in which the excess Gibbs energy 
does not depend on the heat of mixing because the constant 
temperature constraint L/  T/tlsl = 0. From an experimental point of 
view. this simplification is valid when the V L E  data are obtained with 
ii good control o f  the temperature, an experimental condition which 
involves .s0//7e d d l i w g i ~ s  when mixtures with unusually large heats of 
mixing are being measured (for example, methanol + diethylamine). 
Rarely the excess volume is exactly zero, but its contribution can be 
reasonable neglected at low pressures: Under these assumptions Eqs. 
(7) become 

(22) 
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TESTS OF VAPOR-LIQUID EQUILIBRIUM DATA 17 

Replacing Eq. (22) in Eq. (20) yields 

In the practice of point-to-point consistency testing by means of Eq. 
(23), an analytical (and empirical) function for the excess Gibbs energy 
on the composition is postulated, then its parameters are fitted to the 
experimental bubble-point pressures. Vapor phase compositions can 
be calculated as follows 

Combination of Eqs. (23) and (24) requires only T - x data for the 
estimation of bubble-point pressures and vapor phase compositions 
which can be compared with experimental data. The basic idea of the 
point-to-point test is to verify if a fit of the pressure produces 
simultaneously a fit of the vapor phase composition which was not 
considered in the parametrization of the assumed excess model. 
Consistency of the data is declared when the mean absolute deviation 
(MAD) of the calculated composition with respect to the experimental 
composition in the vapor phase does not exceed a certain value 
(arbitrarily selected as 0.01, as have been suggested by Fredenslund et 
al. [8]) with a random scattering of the residuals Sy = y ?Ic - y ypt about 
the zero line, as suggested by Van Ness et al. [6] and Gess et al. [27]. 

The simplicity of this procedure is tempting due to the availability of 
good computational tools for handling any kind of complex fit. 
However, these tools induce also one of the most common errors in 
consistency treatment: confusion between consistency analysis and a 
routine curvefitting task. Computer and curve fitting software "do not 
know thermodynamics", thus consistency should not be considered as 
an automatic procedure. 
Common misunderstandings regarding point-to-point consistency are 
the following: 

rn rarely a residual analysis is reported. 
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18 J. WISNIAK el al. 

The role that residuals play in the point-to-point consistency test 
reliability will be explained later from a mathematical point of view. 
the rules of selection of a GE model are not clear-cut. 

These rules cannot be strictly defined because GE models are 
empirical functions which not necessarily represent the behavior of the 
system. Van Ness et al. [6] suggested the four-suffix Margules model 
corresponding to a second degree polynomial on the composition for 
the function G E / [ R T x , x 2 ] .  This model was selected also by Gess 
et al. [27] Fredenslund et al. [8] suggested the use of Legendre 
polynomials of arbitrary degree for the function GE/[RTxlx2]  and 
pointed that a second- or third-order polynomial will normally give a 
good fit of the pressure for systems that do not contain carboxylic 
acids. The suggestions of Fredenslund have been widely adopted and 
have become almost standard in VLE publications. Nevertheless, the 
consequences of the critical assumption of a G model are usually not 
verified; the model used for fitting the data is normally diferent from 
that used for verifying consistency. This is poor practice and should be 
avoided. In the DECHEMA Chemistry Data Series [24], as an 
example, the model that yields positive point-to-point consistency is 
never recommended as the best fit of the data and the corresponding 
parameters are not listed. The same criticism applies to the data base 
prepared by the Design Institute for Physical Property Data (DIPPR) 
of the American Institute of Chemical Engineers' [27]. 

A pertinent reflection here is to which degree consistency can be 
achieved as a consequence of overcorrelation of data (and therefore an 
autocorrelation of experimental error) or, equivalently, to which degree 
inconsistency can be achieved as a consequence of undercorrelation of 
experimental data. To illustrate this point we can consider that, 
currently, the majority of researchers claim a precision of the order of 
0.1% in the measure of the bubble-point pressure of a particular 
system, hence an error of 1 kPa should be considered a high 
experimental error in an atmospheric range determination, probably 
very bad if this error is systematic. Figure 3.a shows a fictitious VLE 
system (constructed as explained in Appendix A) with a constant 
systematic error of -1.5 kPa in the bubble-point pressure. Figure 3.b 
shows the pertinent activity coefficients and it is immediately noticed 
that the simulated systematic error is not detected in this Figure. The 
consistency of this system is tested with a second order polynomial for 
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TESTS OF VAPOR-LIQUID EQUILIBRIUM DATA 19 

the G “ / [RTxlx2]  function with three adjustable parameters, using the 
method of Fredenslund et al. [8] and Van Ness et al. [6] (both tests are 
equivalent for second order polynomials) and assuming that the vapor 
phase is ideal. From the statistics reported in Table I it is concluded 
that the data should be considered consistent because the minimiza- 
tion of the bubble-point pressure yields a MAD(y) within the tolerance 
suggested by Fredenslund et ul. [MAD(y) < 0.011. In addition, looking 
at the Sy residuals in Figure 3.c, as suggested by Van Ness et al. [6], we 
can conclude the residuals show a random scatter distribution about 
the zero line, as confirmed also by the small numerical value of the bias 
of the vapor phase composition (Tab. I ) .  Hence, the system will be 
declared consistent although the systematic error was completely 
absorbed by the procedure used to j i t  the experimental bubble-point 

200 
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0.0 0.2 0.4 0.6 0.8 1 .o 
(4 X I ’ Y 1  

FIGURE 3 
(See data and details in Appendix A) 
a. equilibrium diagram. 
b. activity coefficients. 
c. bubble-point pressure residuals. 
d. vapor phase composition residuals. 

Fictitious experimental system: Systematic error in bubble-point pressure. 
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FIGURE 3 (Continued). 
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FIGURE 3 (Continued). 

TABLE I Statistics for Figures 3 to 5 

Pertinent Figure BIAS(P)/kPa M A D ( P ) / k P a  BIAS(y)  M A D ( y )  

Figure 3 -0.4358 0.1331 -0.0024 0.0045 

Figure 5 -0.0170 0.5350 0.7260 1.1520 
Figure 4 - - 0.0035 0.0016 

BIAS: average of residuals. 

MAD: mean absolute deviation. 

pressures, as can be deduced from the magnitude of 6P residuals in 
Figure 3. d. A more detailed look at this Figure reveals a suspicious and 
almost sharp functionality of the 6P residuals in XI. These residuals do 
not seem to be biased, but nevertheless, if the errors in pressure 
measurement were random and the selected G model perfect, the 6P 
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22 J .  WISNIAK el al. 

residuals should be random and by none means correlationable. In the 
example under consideration we can anticipate that the behavior of the 
SP residuals is due to the systematic error in the bubble-point pressure 
imposed on the artificial system, because the regular model that 
generates this fictitious system (see Appendix A) can be derived from a 
reduction of the four-suffix Margules model, or from a Legendre 
polynomial. When real systems are taken under consideration the 
model becomes an unknown of the consistency problem, the simulta- 
neous correlation of systematic errors and the behavior of the system is 
unfortunate because the distribution of residuals can be influenced by 
the selection of a particular G model. Simple statistics like the mean 
absolute deviation or the bias are not necessarily informative about 
consistency, but they can inform us about the goodness of the model to 
give a simultaneous and incongruent j i t  of systematic errors and of the 
behavior of the system. Figures 4 presents an additional example taken 
from the DIPPR data base [27] corresponding to the consistency 
analysis of VLE data for the system octane (1) + methanol (2) reported 
by Budantseva et al. [28]. The pertinent statistics appear in Table I. 
Gess et al. [27] declare the data to be consistent but, as can be seen from 
Figure 4.b, the vapor phase residuals fail to scatter randomly about the 
zero line and show some degree of curvilinear correlation with the liquid 
phase composition. In addition, a phase stability study using the four- 
suffix Margules model suggested by Gess et al. shows that the bubble- 
point pressure fit produces an immiscibility gap not present in the 
experimental data (Fig. 4.c). In this case the consistency analysis is not 
conclusive, in part due to the inability of the model to give a correct 
representation of the system stability. Similar mistakes can be detected 
in the DIPPR book in the consistency analysis of the systems pentane 
(1) + 1 -butanol(2) at  303.15 K [29] and cyclohexane (1) + ethanol (2) at 
308.15 K [30]. Thus the common practice of fitting bubble-point 
pressures and recovery of partial statistics such as mean absolute 
averages and biases, should be avoided; it is imperative to study the 
capability of the selected model to give a full representation of the 
system under consideration. 

We should also mention that inspection of the 104 systems that 
constitute the data base suggested by DIPPR indicates that in at least 
60% of them the residual distribution seems to be nonrandom and 
would probable fail an statistic test for randomness. 
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TESTS OF VAPOR-LIQUID EQUILIBRIUM DATA 23 

Equation ( 1 4 )  requires good vapor pressure estimates for the pure 
components and models for nonidealities in the vapor phase. 

As pointed by Van Ness et al. [6]. and by Van Ness [l I], accurate 
values of the vapor pressures of pure components are fundamental for 
an adequate application of point-to-point consistency tests and must 
exhibit compatibility with the VLE data. This compatibility is the best 
test of purity of the reagents involved in the experiments and of the 
performance of the equipment in the infinite dilution range. Normal 
boiling temperatures are usually measured separately and are reported 
in most published experimental works but, both in isothermal and 
isobaric determinations, vapor pressures of the pure components are 
not always measured in the experimental range. In principle, it seems 
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FIGURE 4 Point-to-point consistency analysis of the system octane ( I )  +methanol (2) 
using a four-suffix Margules model [27]. 
a. VLE diagram. ( 0 ) :  experimental data of Budantseva rr al. [28];(-): smoothing curves. 
b. vapor phase composition residuals. 
c. Gibbs energy of mixing calculated from the G" model parameters, after fit of pressure. 
(....): tangent joining LLE compositions. 
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FIGURE 4 (Continued). 
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desirable to measure the vapor pressure of the pure components in the 
same equipment used for determining the VLE data. However, in most 
cases this is not feasible: The boiling point of the more volatile 
component is usually lower than the boiling points of the solutions, 
hence fulfillment of the requirement means measuring vapor pressures 
that may well exceed the pressure limitations of the equipment, 
particularly if it is made of glass. In addition, Antoine’s equation is 
commonly used for the estimation of vapor pressures, it is of great 
importance to guarantee that the parameters of the Antoine equation 
(or other correlation for vapor pressures) cover the complete boiling 
point range of the system. TRC Thermodynamic Tables [31] are 
usually utilized as a source for the parameters of Antoine equations, 
but in this reference the temperature range of the parameters is not 
always given. The contribution of nonidealities of the vapor phase 
becomes crucial when fugacity coefficients exhibit strong dependency 
on the vapor phase composition, as can be deduced from Eq. (12). 
Fugacity coefficients are usually estimated using correlations for the 
second virial coefficients such as that of Hayden and O’Connell [32] 
and Tsonopoulos [31]. Both correlations are a very good predictive 
tool that can be handled with minimal information to take into 
account vapor phase nonidealities, but they do not substitute 
experimental data, when available. The use of inadequate vapor 
pressures and/or inadequate vapor phase corrections induces artijicial 
systematic error in the consistency analysis. 

0 Not every binary VLE system is adequate f o r  a standard point-to- 
point consistency analysis. 

Consistency analysis requires information in the complete composi- 
tion range, both for liquid and vapor phases, this requirement 
generates some complications for binary systems whose constituents 
show large differences in vapor pressures. When components have 
radically different vapor pressures the vapor phase will be highly 
concentrated in the more volatile component and its composition will 
not differ greatly from the value one in a wide range of liquid phase 
compositions. In such cases point-to-point consistency is easily 
achieved but due to the properties of the system the point-to-point 
test is of little value if the pressure is not fitted well. Consider, for 
example, the data of Costa-Lopez et al. [34] for the system methanol 
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26 J. WISNIAK et al. 

(1) + o-xylene (2) at atmospheric pressure. The normal boiling points 
of both components differ by about 80 K. The variation of the activity 
coefficients with composition is shown in Figure 5.a and indicates an 
abnormal behavior for the activity coefficient of o-xylene in the high 
temperature range (XI + 0), no sufficient experimental data are 
reported to demonstrate the existence of a min-max behavior in 
activity coefficients, although it seems unlikely. On the other hand, the 
vapor phase composition in the reported data is always greater than 
0.8 in methanol, as can be deduced from the VLE diagram in Figure 
5.b where the experimental data is compared with the fit obtained by 
adjusting the bubble-point pressures with a four-suffix Margules 
model. Table I presents the statistics of the point-to-point consistency 
analysis, although we cannot replicate the consistency claimed by the 
authors for the data according to the method of Van Ness et al. [6] 
(considerable differences appear in the vapor phase corrections, using 
the data and the references indicated by the authors), it is clear that the 
value of MAD(y) tends to the criterion of consistency. Studying the 
vapor phase composition residual plot in Figure 5.c we can see that 
deviations become greater for low vapor phase compositions of 
methanol; on the other hand, the bubble-point pressure residual plot 
in the same Figure shows that pressure residuals scatter randomly 
about the zero line. Hence, we cannot conclude that the model is 
unable to give an adequate fit of pressure. In this case, the point of 
lowest composition in methanol (point A in Figs. 5.b and 5.c) seems to 
be an outlier, although this conclusion cannot be confirmed because 
few data points are reported in the range of low methanol composition 
where important variations of the vapor phase composition are 
expected. The only thing that can be concluded from the present data 
is inconsistency or experimental errors in the range rich in o-xylene. A 
reliable application of point-to-point consistency would consider 
experimental determinations over the whole composition range, 
particularly in the mid-range compositions where a better analytical 
accuracy is expected. 

Systems with immiscibility gaps are not good candidates for point- 
to-point consistency analysis because, in general, activity coefficient 
models cannot give a simultaneous fit of VLE and LLE data [35]. 
From this point of view, it is important to assure that the fit of 
pressure with the selected model will give an adequate description of 
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the point where three phases are present (heteroazeotropic point). In 
addition, the model selected must guarantee the stability of the liquid 
phase composition in the neighborhood of this particular point so as 
to avoid the study of consistency with unstable liquid phase 
compositions. Consistency analysis with systems which show extreme 
immiscibility may be inadequate but informative because, in this case, 
there is no mid-range information for the liquid phase. 

Point-to-Point Consistency from a Mathematical Point of View 

As indicated before, when performing a point-to-point consistency test 
for isothermal data, a C E  and a vapor phase correction models are 
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FIGURE 5 
at  101.325 kPa using a four-suffix Margules model. Data of costa-Lopez et a/. [34]. 
a.  activity coefficient plot. (a): Iny2; (o):lnyz; (-): smooth tendency. 
h. VLE diagram, (a,.): experimental data; (-): predicted by a four-suffix Margules 
model with parameters obtained from a consistency analysis. 
c. plot of residuals. (a): pressure residuals; (0): vapor phase composition residuals. 

Point-to point consistency analysis of the system methanol( I ) +  o-xylene(2) 
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FIGURE 5 (Continued). 
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first selected and then Eq. (23) is fitted to the experimental bubble- 
point pressure data. This procedure requires only T-x data, and 
generates fitted bubble-point pressures and vapor phase compositions, 
although the latter is no used in the fit. The fit procedure is usually 
done using a least squares method with the following objective 
function 

In Eq. (25) N d  is the number of experimental points and A the set of 
parameters of the selected G E  model. Note that in Eq. (17) the 
objective function has been selected as the diflerence between the 
experimental and calculated pressures. Another reasonable objective 
function could be square of the percentual error between predicted and 
calculated bubble-point pressures, but Eq. (25) is retained because 
usually the standard deviation instead of the percentual standard 
deviation is reported. It should be remembered that in a nonlinear fit of 
data the values of the calculated parameters will depend on the 
objective function selected. From a practical point of view we can 
postulate that the experimental bubble-point pressure is given by the 
relation 

Pcalc,, is obtained from Eq. (23) and the residual errors 
c5;,j = Pcalc,j - Pexp,j take into account the random error present in 
pressure measurements when and if the model can be considered 
perfect. Equation (26) is not necessarily rigorous because random 
errors in the liquid phase composition and temperature have not been 
considered. They can be small but influent, and usually their effect will 
not be linear, as can be deduced from Eq. (23), this complication is 
analyzed later. The common (and reasonable) assumption is that 
random errors in experimental measurements are normally distributed 
with an expected value of zero. The formulation of the minimization 
problem of the objective function given in Eq. (26) has been discussed 
by Edgar and Himmelblau [36], and the procedure is briefly discussed 
in Appendix B for the determination of the parameters of a G model. 
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The optimal parameters are calculated by solving the following 
relation 

From Eq. (27) it can be deduced that pressure residuals generated by a 
specific G E  selection are directly related to the model because the 
derivatives dP, ,~, ,~/dAk are obtained analytically from it. The pressure 
residuals in Eq. (27), 6 ~ , ~ ,  should not be confused with those discussed 
in Eq. (18) because they are generated by arbitrary G models (not 
necessarily the perfect model). From Eq. (27) it is deduced also that 
different models will generally give different pressure residuals. A 
bubble-point pressure fit procedure is an estimation of the residuals of 
the actual pressure which are generally not available, but have known 
(or reasonably assumed) characteristics: if they represent random 
errors they must be distributed normally or they must scatter randomly 
about the zero line with a magnitude within the range of the 
experimental pressure measurement error. This last condition imposes 
some constraints on the G model selected, to be adequate it must, in 
particular, reflect the postulated pressure residual characteristics. If 
this is not the case, consistency analysis can be inconclusive even when 
vapor phase composition residuals scatter randomly about the zero 
line with small deviations, because bubble-point pressure residuals 
[Eq. (24)] are afected by the particular model selected and, as discussed 
above (Fig. 3), systematic error (which generates inconsistencies) can 
be absorbed by the bubble-point pressure fit procedure. Hence, not 
only vapor phase composition is important, residuals and statistic in 
pressure must also be considered in the consistency analysis. 

Vapor phase residuals are similarly calculated as 

where the activity coefficients and the pressure are calculated from an 
adequate G model. Again, the vapor phase composition residuals 
that appear in Eq. (28) are not available but must represent a modeled 
random error for consistent information, i.e., they must scatter 
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randomly about the zero line. Vapor phase residuals depend not only 
on the selected model but also on the calculated bubble-point pressure 
[Eq. (28)]. The model dependence of residuals is regrettable and 
constitutes the fundamental weakness of any point-to-point model 
based test because there is no simple way in which model fit inability 
and moderate systematic error can be distinguished from a residual 
plot when an arbitrary G“ model is used. 

As mentioned before, although in residual analysis the values of T 
and X I  are considered fixed and exact values, experience show that 
they can fluctuate randomly in a limited range (generally, publications 
report the standard deviations of T and X I ) .  These fluctuations will 
induce a nonlinear random error propagation in the bubble-point 
pressure and in the vapor phase composition calculated by means of 
phase equilibrium relations, these errors must be considered in 
addition to the pertinent errors involved in the measurements. 
Fluctuations in pressure and vapor phase compositions about the 
equilibrium state are given by 

The pertinent partial derivatives required in Eq. (29) are given by [I81 

(30.a) 

(30.b) 
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where AHi is the partial heat of vaporization for component 
i(AHi = fl; - Hf)l A &  is the partial volume of vaporization 
(Avi = vr- vf)l and GL1 Gv are the molar Gibbs energy for the 
vapor and liquid phase respectively. Certainly, Eqs. (30) contain 
information which is not always available, but reasonable approxima- 
tions can be done in order to estimate the fluctuations in Eq. (26), for 
example, the vapor phase can be considered ideal, liquid volumes can 
be neglected in comparison to the vapor phase volume, and partial 
vaporization enthalpies can be reasonably approximated by pure 
component vaporization enthalpies. In addition, molar Gibbs energies 
can be estimated from liquid phase excess properties and assuming 
ideal gas behavior for the vapor phase. Considering all the random 
errors to be independent a combination of Eqs. (29) and (30) yields the 
following estimates for the vapor composition and pressure standard 
deviations: 

(31.a) 

(31.b) 

The significance of Eqs. (31) is their relation with the consistency 
criteria. In the test of Fredenslund et al. [B] it is proposed that the data 
are consistent if the mean absolute deviation of the vapor phase 
composition is less or equal than 0.01 but, as pointed by Fredenslund, 
this selection is arbitrary and corresponds approximately to the sum of 
liquid and vapor phase composition errors. Equations (3 1) indicate 
that in addition to the measurement errors of the vapor phase 
composition and bubble-point pressure, deviations depend also on the 
physical properties of the system, on the equilibrium temperature, and 
on the liquid phase composition (in the best of the cases these last 
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variables are constrained to .rundoin error). This is expectable because, 
in general, systems are not chemically comparable and experimental 
conditions differ according to the equipment, the particularities of the 
system and the temperature range. Obviously Eqs. (31) offer a more 
theoretical insight for establishing the limits of confidence of the 
pressure and the vapor phase composition. Equations (31) suggest also 
that when performing a consistency test the pressure should not be 
assigned the same statistical weight for every experimental point. 
Hence, estimation of the parameters for systems which show poor 
consistency should be done using the maximum likelihood principle 
instead of the Barker equation [37]. 

Improving the Reliability of Point-to-Point Consistency Tests 

In order to give more reliability to the point-to-point consistency test, 
the following steps are suggested: 

0 The vapor pressure correlations and the model for vapor phase 
corrections must be carefully selected. Physical considerations like 
association should be justified. A routine procedure should include 
the calculation and plotting of activity coeflcients because, as 
explained above, the functionality of activity coefficients is 
constrained in the infinite dilution range and a smooth behavior 
of them is a good symptom of consistency. The same physical 
considerations as for the vapor phase must be used in all the 
consistency analysis. 

0 The G E  model selection is an unknown factor in the point-to-point 
consistency procedure but, for theoretical reasons, activity coeffi- 
cients are well-behaved functions of the composition. It is reason- 
able to consider that in isothermal systems the activity coefficients 
can be expanded in a Taylor series of the composition at  low 
pressures or, equivalently, they can be represented by composition 
polynomials with a degree determined by the appropriate fit of the 
data. Orthogonal polynomials, instead of the Redlich-Kister 
expansion, are a good selection due to the mathematical property 
that their coefficients are relatively independent when smoothing 
discrete data. Legendre orthogonal polynomials are used in the test 
of Fredenslund et al. [8 ]  to fit the bubble-point pressure, another 
alternative is the use of Chebyshev orthogonal polynomials, as 
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suggested by Tomiska [38] for representing excess properties. In  
order to determine the number of polynomial terms used to fit the 
bubble-point pressure it is suggested to perform a serial fit 
procedure, starting with a low order polynomial (second or third 
order). I f  for a certain polynomial degree consistency is not achieved 
then selection of higher order degree polynomials is justified 04v 
when the previous coefficients do not change significantly (with 
errors in the bubble-point pressure or the order of the error of the 
Antoine correlation used in the study, and decreasing errors in 
vapor phase composition). Overcorrelation of bubble-point pres- 
sures can be avoided considering the minimum error that can be 
expected in pressure, which can be estimated rrom Eq. (3  I .b). 

0 Once the empirical consistency criteria is satisfied, the reliability of 
the model must be tested because the parameters of the model can 
be biased by systematic errors, even when the objective function and 
the average of residuals yield small values. Some possible 
alternatives are the following: 

(a)  average deviations of the calculated vapor phase compositions are 
weak statistical tools as critcriir of’cnnsi.s/c~nr~.. Probably the most 
important statistic is the maximum absolute deviation because this 
value will indicate either an outlier an unappropriate model. 
Surprisingly. statistical studies regarding pressure appear only in a 
very small number of publications, in spite of rhc fact that both 
pressure and vapor phase statistics are relevant for model testing 
and consistency. 

(b) experimental activity coefficients should be moothed by the s m w  
model that gives consistency to the data, specifically in mid-range 
concentrations. Low concentration ranges will show, in general. 
some degree of discrepancy because they are numerically sensitive 
to small errors in composition. This is a good opportunity for 
detecting model wriggle, specifically when polynomials are used. 

(c) the parameters of the model should be calculated using the bubble- 
point pressure version of equilibrium calculations. A very good 
test is to assess statistically the tendency of other VLE calculations 
using the consistency parameters, specially informative is the dew- 
po i n t press i i  re ca I c u 1 a t i  on ( u si n g c . ~ p ( ~ i Y n ~ c i ~  t rr / va po r phase 
compositions) because it measures thc compatibility of the model 
parameters for giving liquid phase compositions. Assuming that 
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the data arc consistent. a model can be considered adequate when 
different versions of ecquilibriuni calculations give errors of similar 
order. This should be .sttinrlc/r.c/ ptwi'tic*c not o n l y  in consistenc! 
testing but also when calculating the piratiic1crT o f  !he model. 

(d)  an  stability study using the parameters 01. the mociel is highly 
suggested. speciallv for . t ems t h a t  s hon 1;i rge posi t i t e devi ;I t ion s 
from ideality. 

Point-to-point consistcnc> i . < l i : i l > i l i [ >  c,in hc I:ii.gc!j iilcrcLi>cd *$\.lieii 

prcssure ;ind \ : ipoi .  phase i-c~icitial.; :ire ;in:il! ,,cd. l i i t c '  y i c t , i t i o n  
residuals i.; n e t  clear-cut. particuI;irIy \vhcn thi.! iliou. siiiall 
deviations. hcz,i use they 1-ellcct some bias o f  thL. nioc l : l  ;iiiJ x c i i  

nonlinear pert urh;i t i  o r  is 01' tenipcrai ~ i r c  and liq ti id plia be coin p s i  t i  o ii 
errors. Howc\.er. i t  should be clear t h a t  \\.hen thc model is perfect. no 
s~~s tcmnt ic  c r i  o r  , I n d  110 t.;lild<ltil ~ r r o r  is conitlllt[cd In thc dctci-111IIi;I- 
tioil of 7' . \ I  residuals, thcy m u h t  scatter r i i ido i i i ly  about 111c ~ c r o  
line \ \ . i t l ioi i i  an! t c i idenc~ .  I I '  the tnodel is p ~ ~ ~ ~ p e i ~ l j  tc\tctl tlic 1x1s o f  i t 5  

residu'ils sliould he mininii/,ccl. Equ;ittonc ( 3  I I g i \ c  .in estiniatc' 01' the 
standard cicviation t h a t  b h o u l d  be expected on prcss~irc and  o n  vapor 
phase conipo4tions if tlic c\perimciit is ciirricil out I'rcc 01. 
error. obviously the use 01' Eq.  ( 7 1  . b )  is limilcd to non ucot ropic  
ranges. The use of such eyuiitions is suggcstcd l.or :he b ta t i !  01. biascci 
residuals atid I'or cstablishing LL critcri:i 01 Licccptanc: i i i  rhc pmczdui-c 
of  minim iza t i L) n o f  b ii bb 1 e- po i n I p rcss ~irch. 

To illustrate these concepts. let LIS analyze tlic dat,i l'or the syxtcm 
ethanol ( 1 ) 7 octane ( 2 )  \> \ tern .it .3-1.3.15 K reported I>! IHrLthi c'/ (i/, 

[39]. Vapor phase calculations have been niadc using the rnclhocl oi' 
Hayden and O'Connell [37]. liquid volumes have been calcuiateci I'ron: 
the correlation of Spencer and Lhnner [do]. :mi v:ipur  pressure 
correlatiolix have been taken f rom Hiaki o t  ( I / .  I-'ig~ire 6.a ~ I i o w s  the 
activity coefficients iis ;I function ol  concentr~i~ioii ,  i t  is seen t h a t  t he  
da 1 ;I ha ve ;I smooth t c t i  d enc) and t h c a pp ro pr  i: 1 t c t ii n ge n t bc h ;I vi < I- 

when approaching the concenti ,atd cnd. The plot o f  the G '/f<T.\-l \-? 

function magnifies the e imrs  i n  the l o w  concentrLition range. but i n  
this case the tendency o f  the activity coetlicient curves and  the 
G ' ' / R T . Y ~ S ~  curve is clear. From this analysis w e  conclude that vapor 
pressures and vapor phase corrections are reasonably good. For the 
analysis of the consistency of the data Legendre polynomials of 
various degrees have been considered. Figure 6.b shows how the values 
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36 J.  WISNIAK e f  al. 

of the coefficients change between sequential fits and from we can is 
deduce that no substantial changes occur for ascending polynomial 
degrees. Table I1 presents the pertinent statistics for the fit, it can be 
seen that a reduction in pressure deviations implies a simultaneous 
reduction of vapor phase composition deviations, which exhibit a 
permanent positive bias. A third-order degree Legendre polynomial is 
equivalent to the four-suffix Margules equation, in the case under 
consideration this is not the best alternative from a fit point of view, 
although empirical consistency criteria is achieved for three or more 
terms. Figure 6.c shows the interpolation of activity coefficients for a 
fit using Legendre polynomials of three and five parameters, it is seen 
that with five parameters the fit is improved slightly. In general, the 
interpolation can be qualified as good, but it is clear also that the 
activity coefficients of methanol are better represented than the activity 
coefficients of octane. Table I11 shows the statistics for different VLE 
calculations when different models are used, the Wilson equation [41] 
is used as a comparative reference because it has a different functional 
character. From Table I11 it is concluded that a good fit of bubble- 
point pressures is not compatible with dew-point pressures and that 
the model seems not to be the origin of the problem, because three 
different models give the same response. The discrepancies observed 
for different VLE calculations present an interesting thermodynamic 
problem because the parameters of an activity coefficient model have 
many predictive uses in process simulation. For example, the design of 
continuous distillation columns is usually based on bubble-point 
pressures and flash calculations, the design of a total condenser 
requires dew-point pressure calculations, etc. All these calculations 

TABLE I1 Statistics for successive applications of the point-to-point test. Ethanol 
(l)+octane (2) system at 343.15 K. Data of Hiaki et al. [39] 

Statistic Number of Legendre polynomial terms 

I 2 3 4 5 

MAD(P)/kPa 2.321 2.369 0.329 0.214 0.096 
MAD(y)x100 1.295 1.230 0.557 0.548 0.404 
BIAS(y)x 100 -0.464 -0.407 -0.457 -0.324 -0.351 

BIAS: average of residuals. 
M A D  mean absolute deviation. 
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TABLE 111 
(2) system at 343.15 K .  Data of Hiaki et al. [39] 

Statistics for different versions of VLE calculations. Ethanol ( I ) +  octane 

Statistic LP5 LP3 WILSON 
BUBLP DEWP BUBLP DEWP BUBLP DEWP 

MPDP(%) 0.123 1.176 0.459 1.490 0.256 1.193 
MAD(y)x 100 0.404 ~ 0.557 - 0.397 ~ 

MAD(x)x 100 3.838 3.179 - 3.845 ~ - 

BIAS : average of residuals. 
MAD : mean absolute deviation. 
MPDP : mean percentual deviation in pressure. 

LP3 : Legendre polynomial, three parameters. 
LP5 : Legendre polynomial, five parameters. 
N d  : number of data points. 

usually give errors of different magnitude when the data is 
parametrized according to a particular objective function, hence a 
good practice in data treatment is to give statistics for different VLE 
calculations. An stability analysis shows that no immiscibility gap 
appears when the data are fit using Legendre polynomials of three to 
five coefficients. In summary, there is a good basis to claim that the 
data are reasonably represented by a five-parameter Legendre 
polynomial. Pressure and vapor phase composition residuals for 
different Legendre polynomials are shown in Figures 6.d and 6.e. Let 
us first to examine Figure 6.d, where a three-parameter Legendre 
polynomial is used; pressure residuals do scatter about the zero line, 
but not randomly showing a sinusoidal and correlationable tendency. 
The random scatter of the pressure residuals is important because 
vapor pressure residuals depend on them. In addition to a systematic 
error, there are many causes for which pressure residuals do not scatter 
randomly, one easy to identify is the use of poor vapor pressure data 
but, it is more difficult to judge the behavior of residuals in terms of 
subcorrelation of data when they can be biased by the model. This is 
the reason why to use several models, in the case under consideration 
the data have been fitted using polynomials of different order. As 
shown in Figure 6.d, the behavior of vapor phase composition 
residuals could be biased by a subcorrelation of pressure, but this 
question has no definite answer. From our previous calculations, 
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38 J .  WISNIAK CI 01. 

however, we have a good basis for establishing that a three-parameter 
Legendre polynomial is not the best selection for the data. Figure 6.e 
shows the residuals for the tit with a five-parameter Legendre 
polynomial. in this case the pressure residuals are scattered randomly 
about the zero line, but vapor-phase composition residuals are not. 

- 4 ,  
I 

0.0 0.2 0.4 0.6 0.8 1 .o 
(a) XI  

FIGURE 6 Consistency analysis of the system ethanol (I)+octane(2) at 343.15 K. 
Data of Hiaki el ul. [39]. 
axtivity coefficient plot. (0): In 71, In 7 2 ;  (a)G"/RTrls2;(-): smoothed curves. 
b. Legendre polynomial coefficients for sequential fits of bubble-point pressure 

c. interpolation of experimental activity coefficients. (0) : yylc/-y;xp for a three-parameter 
Le endre polynomial; (m) -yp"/$'P for a five-parameter Legendre polynomial; (0): 
-yy'/-y;"P for a three-parameter Legendre polynomial; (B): yCa'c/yyp for a three- 
parameter Legendre polynomial. 
d. pressure vapor composition phase composition for a three-parameter Legendre 
polynomial. ( 0 )  :y x 100; (a) : 6P/kPa.: 
e. pressure and vapor composition phase composition for a three-parameter Legendre 
polynomial (0) :y x 100; (a) : GP/kPa; (. . .): pressure confidence limit/kPa; (-): vapor 
phase composition confidence limit. 

(o)AI;(*)A~ : (0): A,: (B): A4 (A): As. 
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FIGURE 6 (Continued). 
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FIGURE 6 (continued). 
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Figure 6.e shows also the confidence lines calculated from Eqs. (31) 
assuming ideal gas behavior, partial volumes equal to the ideal gas 
volume, partial enthalpies equal to pure compound vaporization 
enthalpies, and approximating (3 2GL/ll .~:)T,P by ( x I x ~ ) - '  (the maxi- 
mum value in the case under consideration, because the system shows 
positive deviation). Experimental errors in the liquid phase composi- 
tion, temperature and pressure where taken equal to the measurement 
accuracies reported by Hiaki et af. [39]. From Figure 6.e it  is concluded 
that the population of pressure residuals is reasonably contained 
within the pressure confidence interval, but vapor phase composition 
residuals are contained in the composition confidence interval only for 
high concentrations of methanol, the excessive deviation of composi- 
tion residuals at low concentration cannot explained only by random 
errors. The experimental data for the system ethanol ( 1 )  +octane (2) 
reported by Hiaki [39] is one of the best that can be found in the 
literature, and satisfies the consistency for most of the common tests, 
but here we present reasonably evidence of systematic error that will 
induce problems with the correlalion of the system. 

Consistency of Isobaric Systems 

For isobaric systems combination of Eq. (7) and (23) yields 

(32) 
AH dT 

VLE data obtained under isobaric conditions find direct application 
in conventional distillation and constitute an economical and time 
saving experimental alternative. Consistency analysis of isobaric 
systems involve the availability of enthalpies of mixing, which seldom 
are determined at various temperature levels; in addition, this property 
exhibits complex and non easily predictable functionalities on liquid 
phase compositions. According to Eq. (3), a consistency analysis is not 
possible without enthalpies of mixing, but it is also reasonable to 
assume that a practical experimental VLE planning cannot be 
constrained to the requirements of a consistency test. Thus the VLE 
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42 J .  WISNIAK et al. 

reduction of isobaric systems, when no enthalpy of mixing is available, 
is a theoretical problem instead of an experimental problem and does 
not have an easy solution. Group contribution methods, such as 
modified UNIFAC [24], [42], [43] permit adequate prediction of 
enthalpies of mixing for a limited number of components. As a result, 
the point-to-point consistency test of isobaric systems, where the 
enthalpic term is neglected, is an inaccurate analysis of VLE 
information. Fredenslund et al. [8] have suggested the use of 
temperature-independent Legendre polynomials for the representation 
of G E ,  the inadequacy of this suggestion can be easily demonstrated 
with respect to the integral test. From Eq. (13) we have 

When a point-to-point consistency test is carried with a G model 
whose parameters do not depend on temperature, the left-hand side of 
Eq. (33) will always be zero. Hence, it can be concluded that a 
consistency approach based on a particular temperature-independent 
model will not give an adequate representation of individual activity 
coefficients when the right-hand side term of Eq. (33) cannot be 
neglected. From this point of view, it is important to verify the 
hypothesis that excess enthalpies can be neglected. When no data 
regarding enthalpies of mixing are available and the VLE data meet 
the consistency criteria, it is recommended to compare the ratio of the 
activity coefficient ratio, calculated with different models, with the 
experimental activity coefficient ratios. Consistency cannot be declared 
when important differences are appreciated among the results, the only 
thing that can be said is that the data are reasonably interpolated by 
temperature-independent models. Consider, for example, the VLE 
data of Ninov et al. [44] for the system diethylamine (1) + chloroform 
(2) at atmospheric pressure. The pertinent data appear in Figure 7.a. 
According to Ninov et al. the data are consistent because they can be 
fit with the NRTL [45] and the Wilson [41] models, using temperature- 
independent parameters. Repetition of the calculations does not yield 
the consistency claimed by the authors, probably due to the fact that 
they have used the following simplification of the y - qh equations for 
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the calculation of activity coefficients 

Equation (34) appears in the reduction analysis of some published 
VLE data, its use is inadequate and should be avoided in consistency 
anulysis because the calculated activity coefficients do not tend to unity 
at infinite dilution. Following the procedure suggested by Frcdenslund 
et al. [8], the MAD(y) is calculated to be 0.016 for a three-parameter 
Legendre polynomial (the use of more parameters induces polynomial 
wriggle and increasing vapor phase deviations for the data under 
consideration) and average absolute deviations higher than 0.01 for 

0.0 0.2 0.4 0.6 0.8 1 .o 
(4 XI 

FIGURE 7 Graphical comparison between experimental In [?I /m] and those obtained 
from isobaric consistency. 
a. analysis of the data of Ninov ef nl. [44]. (0): experimental points; (-): obtained from 
temperature-independent Legendre polynomials. 
b. analysis of the data of Hiaki er al. [46]. (0): experimental points; (-): obtained from 
temperature-independent Legendre polynomials. 
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0.0 0.2 0.4 0.6 0.8 1 .o 
( b) XI 

FIGURE 7 (Continued). 

the NRTL and the Wilson equations. Considering only the mid-range 
compositions, from Figure 7a it is concluded that In[ r l / -~]  is not 
represented well by a G model with temperature-independent 
parameters. In addition, i t  is not clear if the lack of fit is due 
inconsistency of the data, to a nonnegligible heat of mixing (usually 
observed in amine solutions), or by both effects. In contrast to this, 
Figure 7b presents an analysis of the data of Hiaki et al. [46] for the 
system propanol (1)  + octane (2) system at atmospheric pressure, 
where an excellent prediction of the In[r,/+y2] function is observed 
using the same G model used in the consistency procedure (a three- 
parameter Legendre polynomial with temperature-independent para- 
meters). These data  satisfy clearly the consistency criteria 
[MAD(y)] = 0.0061, although vapor phase composition residuals fail 
to scatter randomly about the zero line, and may be qualified hence as 
consistent. 
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Although it  is tempting to add temperature-dependent parameters 
to a G model in isobaric consistency analysis, it is not recommended 
to do so unless excess enthalpy data are available. This results from the 
fact that rarely excess enthalpies can be predicted using only VLE data 
and empirical temperature dependence for G models [8]. 

4. Direct (or Differential) Consistency Tests 

In a recent communication Van Ness [ I  I ]  proposed a direct test of 
thermodynamic consistency. As its predecessor [6], this new test is 
point-to-point, model based and residuals play in it a central role. No 
VLE calculation is needed because the test proceeds directly with 
activity coefficients and Gibbs excess energy functions. The main ideas 
are briefly discussed below. 

For experimental data the following thermodynamical relation can 
be written 

where gE = C E / R T .  The Gibbs-Duhem equation is recognized in the 
four last terms of the right-hand-side of Eq. (39,  but due to the fact of 
errors in experimental data, the sum of these terms does not add to 
zero. When applied to perfect data, or to a G E  model whose 
parameters are fitted to experimental data, Eq. (35) becomes 

Subtracting Eq. (35) from (36) yields 
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4 6 J .  WlSNlAK ('I d. 

where Sg" is the excess Gibbs energy residual and b ln (? i / y , )  is thc 
activity coefficient ratio residual. For calculating the former residuals, 
the use of an activity coefficient model is proposed. whose parameters 

~~ A are calculated by means or minimization of 

(35)  

tlu ( / \ - I  
(39) 

hence Fq. (39) beconics 

The right-hand side of  Eq. (40) does not depend on a model but o n l y  
on cxpcriinental data, and. on tho other hand, i t  r c p r ( ~ . s e / i t . s  tho t.i,qoroi~,\ 
.slo/io /o.s l  based on tlic C i b b ~ - l ~ ~ ~ I i c ~ i l  e q u a t i ~ n .  V a n  Ness pointcd u ~ i t  
(1i;iL by sclccting a particular activity coelficien t model and minimi~ing 
Eq.  (40), consistency can be analyzed revising the activity coeificicnt 
rat io  residuals. I n  addition. from Eq. (37) Van Ness deduced the 
I0 I I o w i iig Ie la L i  011 fo  r ;in a 1 tern ;I Live a lea t es t 

T h e  right-hand-side o f  Eq. (41) represents the classical integral area 
test. Instead of it, Van Ness suggests calculating the integral in the left- 
hand side after the residuals hln(yi/yz) have been niinimizcd. 

T h e  proposed test is particularly attractive due to its relation with 
the slope test given by Eq. (40). Furthermore, the regression of g" for 
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direct consistency, or In[yl /y2] for the alternative area test, yields 
linear fit procedures when the liquid phase is described by 
polynomials. Hence the application of the test to experimental data 
is particularly simple, especially when compared with iterative bubble- 
point pressure method. However, there are some precautions that 
should be taken into account in its use; maybe the most important is 
related with Eq. (36). Suppose that an analytical G model, say the 
Wilson equation, is used for generating perfect data, then these data 
are fitted using other G model; although it is possible to obtain a very 
good representation of the original data, it is not possible, in principle, 
to obtain the exact value of the compositional derivative pertinent to 
the original data over the whole concentration range. Hence, there is 
no mathematical reason for which Eq. (39) must have a zero value, 
unless perfect data and the pertinent model which represent it is being 
analyzed. Following this reasoning, there is a residual term that has 
not been considered in Eq. (40) and, thus regrettably, it is model 
biased. When treating experimental and discrete VLE data an 
interpretation of Eq. (39) becomes cumbersome and the extent of its 
effects on the residuals that appear in Eq. (40) are not clear, but the 
former equation depend on the selected model. 

The structure of Eq. (41) is interesting because, as pointed by Van 
Ness, the right-hand side integral depends only on experimental data, 
thus the left-hand side integral is independent of the model. This 
conclusion follows from the fact that Eq. (41) is a thermodynamic 
identity. The fit of the ln[rl/rz] function by means of G polynomial 
models, which allow the calculation of Gln[yl/yr] residuals, is a simple 
linear fit which include intercept (this follows from the fact that 
In[?] /y2] is not zero in the low concentration range, with the exception 
of ideal systems). In this case, when the ordinary unweighted least 
square technique is used and the fit is properly done, the bias of 
61n[yl /y2] residuals is zero [47] yielding always scatter distribution of 
points about the zero line, independentiv of the quality of the data. 
Hence, the measure of inconsistency using the left hand side of Eq. 
(41) depends on its numerical integration as a function of the 
composition. This integration is model biased because two different 
linear interpolation functions will generally give a different wriggle in 
the neighborhood of the interpolated points. There are no advantages 
in replacing the right-hand side integral of Eq. (41) with an integral of 
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residuals because the former can be easily smoothed previous to 
numerical integration (in spite of the bias introduced by the smoothing 
model). 

Kojima et al. [9] proposed a point-to-point test based directly in Eq. 
(6). For this test the discrepancy 

observed in experimental data  is evaluated. The functions 
G E / R T  and In[yl /y2] are independently fitted to experimental data 
using, in both cases, the Redlich-Kister expansion with three to four 
coefficients. The bubble-point pressure and temperature are reduced to 
pressure and temperature of mixing as follows 

and then properly smoothed for the estimation of the dP/dxl 
and dT/dxl derivatives required by the isothermal and isobaric cases, 
respectively. The integration of Eq. (43) over the complete concentra- 
tion range yields the area test and at infinite dilution we have 

The limiting values given in Eqs. (44) allow the measure of 
consistency at infinite dilution. The simplicity of the suggested 
procedure is remarkable because no iterative calculation is needed, 
the only requirements are activity coefficients carefully calculated from 
experimental data and enthalpy and volume of mixing data (for 
isobaric and isothermal systems respectively). The weaknesses of this 
test are similar to those discussed for the test of Van Ness [ l l ] ,  
although the [ G " / R T ]  function can be well fitted to experimental 
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data, the derivative d/C(yl[GE/RT] required for Eq. (42) is model 
biased. In particular, at constant temperature, due to the weak 
contribution of pressure to the excess Gibbs energy, the following 
approximation is acceptable 

When the functions G " / R T  and In[-yl/-yz] are independently fitted 
to experimental data using the same excess model, Eq. (45) is rarely 
satisfied and different values for the parameters of the model are 
usually observed, because G ' / R T  and In[yl /yz] constitute different 
objective functions for regressing the parameters. This result can be 
attributed not only to the inconsistency of the data but also to the 
fitting capabilities of the model, hence we can expect that the test to be 
model biased. Fortunately, Kojima ct ul. [9] selected a variable 
Redlich-Kister expansion, thus the problem of bias due to the model 
can be reduced. 

The integral version of the teyt of Kojima rt af. is 

Especial attention should be given to the second term of the right- 
hand side of Eq. (46). When the ratio between the activity coefficients 
is represented by a Redlich-Kister expansion with temperature- (or 
pressure) independent parameters, then this term is always zero, 
independently of the quality of the data, reaching wrong results about 
consistency. 

The L-W Test of Consistency 1101 

Recently Wisniak [ 101 proposed the L-W test of consistency described 
briefly below. Activity coefficients are calculated rrom 
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Considering Eq. (47) and the Clapeyron relation yields 

where and Ti and AH; are the boiling point and vaporization 
enthalpy of the pure component at the operating pressure Rearrange- 
ment of Eq. (48) gives 

c 

C 

= G"/AS - RTw/AS - R T X  xk In@k/AS = w; (49) 
k 

In Eq. (49) C is the number of components, A$' is the entropy of 
vaporization (ASo = AZ?'/T') and 

c' w = x x i l n -  Yi 
I xi 

(50.b) 

The function w is also known as the weighted volatility function 
discussed by Malesisnki [18]. Equation (49) defines a relation of point- 
to-point consistency for each experimental point. In addition, 
integration of Eq. (49) over the whole compositional range gives 

1 

L = 1' Lidxi = 1 Widxi = W (60) 

which represents an integral consistency test. According to Wisniak 
the set of data is considered consistent if the parameter D, defined as 

IL- WI 
IL+ WI 

D =  1 0 0 ~ -  

is less than 3 for the case when experimental data on heats of 
vaporization are available, or less than 5 if the latter has to be 
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estimated by empirical correlations. The main advantages of the L-W 
test are that no information about heat and/or volume of mixing for the 
liquid phase is needed, it is a simultaneous point-to-point and area test, 
and may used,for systems containing any number of components. The L- 
W test has not been deduced from the Gibbs-Duhem relation [Eq. (8)], 
hence a set of data declared consistent by this test will not necessarily 
satisfy the Gibbs-Duhem equation. Wisniak’s test is suitable for testing 
the information that is used for calculating of activity coefficients of 
isobaric systems, particularly, the experimental temperature and the 
vapor pressure correlations. In order to do so it is essential to have 
reliable information about enthalpies of vaporization of the pure 
components. When the components differ widely in boiling tempera- 
tures it is recommended to modify Eq. (48) to take into account the 
variation of enthalpies of vaporization with temperature. Anyhow, the 
L-W test must always be used with a second test derived from the 
Gibbs-Duhem equation for a more reliable qualification of data. 

Conclusions and Recommendations 

Different tests for thermodynamic consistency have been analyzed and 
found to be insufficient for the purpose. The main conclusion is that 
there is no one test that can give a definite answer to the question 
accept/reject the data. In addition, because of their inherent weakness, 
improper application of the consistency tests available today can yield 
unreliable results. The most advisable policy is to check the quality of 
the data using several of the available tests simultaneously and in the 
proper manner. The group of tests used must include the one of 
Fredenslund et al. [8] accompanied by a detailed residual analysis of 
bubble-point pressures and vapor liquid compositions. 

Experimental systems can be classified in one of the following 
categories 

a. inconsistent data that do not satisfy the consistency criteria. 
b. inconsistent data that satisfy the consistency criteria. 
c. consistent data that do not satisfy the consistency criteria. 
d. consistent data that satisfy the consistency criteria. 

Cases a. and d. are self-apparent, they should be rejected or 
accepted by the majority of well-applied consistency tests. Cases b. and 
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c. require a more elaborated treatment. Assuming that good estimates 
for the vapor pressures and an adequate model for the vapor phase are 
available, the following methodology is suggested: 

I .  Activity Coeficients Plot 

Plots of the variation of the activity coefficients with concentration 
should be routinely drawn and inspected for unusual behavior. If the 
data show abnormal tendencies, i.e., the curves do not tend 
tangentially to yi = 1 with increasing concentration, and/or the 
activity coefficient curves show unexplained stationary points the data 
should be revised without performing a consistency test. 

11. Area Test 

The area test should be considered to fulfilled only when D < 2 .  
Isothermal data should be revised when this criteria is not achieved, 
area tests for isothermal systems are well founded and may give 
problems only for systems which deviate slightly from the ideality. 
Area tests should be used for isobaric systems only when the 
appropriate heat of mixing data are available; the Herington test 
should not be used for this purpose. 

I l l .  Tests Based in VLE Calculations 

These group of tests are sensitive to the selected model and to the 
experimental VLE data errors. A necessary but not sufficient condition 
of consistency is achieved when the empirical criteria of consistency is 
met, i.e., the deviation of vapor phase residuals is smaller than 0.01 
and the model gives an adequate representation of the data. These 
necessary conditions establish that the data can be fitted with a G ”  
function for practical purposes such as process simulation, giving a 
reliable quantitative description of phase equilibrium. ‘The G ‘’ 
function selected must fulfill the following requirements: 

( I )  It must satisfy the Gibbs-Duhem equation, experimental data 
which do not have this mathematical property cannot be modeled. 

(2) I t  will give a representation of bubble-point pressures within the 
expected random errors and will predict phase stability of the 
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TESTS OF VAPOR-LIQUID EQUILIBRIUM DATA 53  

system for every composition. Pressure residuals must scatter 
randomly about the zero line as a symptom of adequate fit. 

(3) Activity coefficients should be reasonably represented by the G ':' 
model and other expressions of phase equilibrium, such as dew 
point and bubble-point temperatures, should also be reproduced 
well with the parameters of the model. I f  such model does not exist, 
the data deserve revision. 

This refined consistency procedure, however, does not give all the 
necessary tools for declaring absolute inconsistency, because there is 
always the possibility that the data cannot be represented by the model. 
Attention should be paid to the fact that the Barker equation is not the 
best selection for the estimation of parameters, because it gives a good 
fit only of bubble-point pressures only when it is assumed that the 
measurements of temperature and the liquid phase composition have no 
errors [37]. In  this work we have demonstrated that small and random 
errors in T and x will produce considerable nonlinear propagation of 
errors when equilibrium is considered. Data are valuable even when 
they demonstrate model insufficiency, their analysis requires then a 
model-free treatment of the Gibbs-Duhem equation. One possible 
solution for this situation is to use one experimental activity coefficient 
to obtain the second activity coefficient by a numerical integration of 
the Gibbs-Duhem equation. If the second activity coefficient thus 
obtained matches the experimental activity coefficient the data should 
not then be rejected. Other more appropriated free-model techniques 
are discussed by Mixon et al. [4&] and by Sayegh and Vera [49]. 

Sufficient conditions of consistency are achieved when it is possible 
to demonstrate that the error present in the experimental data is 
fundamentally random error, in this case vapor phase residuals would 
have to scatter about the zero line with no predictable tendency. The 
proof of this point is cumbersome because residuals are model biased, 
hence a random scatter is a symptom of the situation in which both the 
model and the data are correct. A random scatter of vapor phase 
residuals about a clear tendency does not necessarily means incon- 
sistency, i t  can well be due a symptom of lack of fit or model wriggle. 
From this point of view, it is necessary that bubble-point pressure 
residuals have the characteristic of random scatter distribution with an 
adequate model before testing vapor phase residuals. When sufficient 
conditions are met, both the model and the data are recommendable; if 
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not, the maximum likelihood principle [50] is strongly suggested for 
the parametrization of the data. 

Isobaric data in general require information about heats of mixing. 
The bubble-point pressure test can be considered rigorous when the 
experimental ratio l n [ ~ , / ~ 2 ]  is adequately fitted; if not, the test has 
only a qualitative value. 

The use of multiple consistency tests is always to be recommended 
because contradictory consistency results can inform one about an 
incorrect application of a particular test, but it should be pointed that 
only the bubble-point pressure test can give a diagnosis of 
parametrization of the data. 

IV.  Databases 

(a) The consistency results which appear in the DECHEMA 
Chemistry Data Series ( + consistent, -not consistent) should be 
considered only as recommendations (they are based on the 
Herington test and the Fredenslund criteria). 

(b) The method recommended in the DIPPR database [27] of checking 
consistency with one G model (the four-suffix Margules equation) 
and fitting the data another G ”  model is not recommended. 

In summary, in the present state of art of consistency tests only two 
answers are possible: 

Reject the data. 
Do not reject the data. 

References 

[I] Herington, E. F. G .  (1947). Nature, 160, 610. 
[2] Herington, E. F. G .  (1951). J .  Insr. Petrol., 37, 457. 
[3] Herington, E. F. G. (1968). J .  Appl. Chem., 18, 285. 
[4] Redlich, 0. and Kister, A. T. (1948). Ind. Eng. Chmn., 40, 345. 
[5] McDermott, C. and Ellis, S. R. M.  (1965). Chem. Eng. Sci., 20, 293. 
[6] Van Ness, H. C., Byer. S. M. and Gibbs, R. E. (1973). AlChE J., 19, 238. 
[7] Christiansen, L. J. and Fredenslund, Aa. (1975). AlChE J. ,  21, 49. 
[8] Fredenslund, Aa., Gmehling, J .  and Rasmussen, P. (1977). “ Vapor-Liquid 

Equilibria (ising UNIFAC. A Group Contribution Method”, Elsevier, Amsterdam. 
[9] Kojima, K., Moon, H .  and Ochi, K.  (1990). Fluid Phase Equilibria, 56, 269. 

[lo] Wisniak, J .  (1993). Ind. Eng. Chem. Res., 32, 1531. 
[ I  I] Van Ness, H. C .  (1995). J .  Chem. Thermod.ynamics, 27, 113. 
[12] Samuels, M .  R. (1972). Ind. Eng. Chem. Fundam, 11, 422. 
[I31 Samuels, M.  R., Ulrichson, D. L. and Stevenson, F. D. (1972). AIChEJ., 18, 1004. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
0
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



TESTS OF VAPOR-LIQUID EQUILIBRIUM DATA 55  

[I41 Wisniak, J .  (1994). Ind. Eng. Chem. Res., 33, 177. 
[I51 Prausnitz, J . ,  Lichtenthaler, R. and Comes de Azevedo, E. (1986). “Molecular 

Thermodynamics oJ Fluid-Phase Equilibria”, Prentice-Hall, New Jersey. 
[I61 Van Ness, H.  C. and Abbott, M. M. (1982). “Clus.sical Thermodynamics of 

Nonelectrolyte Solutions With Applications to Phase Equilibria”, McGraw-Hill, 
New York. 

[I71 Kohler. F., Liebermann, E., Miksh, G. and Kainz, C .  (1972). J .  Phys. Chem., 76, 
2764. 

[IS] Malesinski, W. (1965). “Azeotropy and Other Theoretical Problems of Vapour- 
Liquid Equilibrium”, lntrrscience Publishers, Warsaw. 

[I91 Michelsen, M.  L. and Kistenmacher, H. (1990). Fluid Phase Equilibria, 58, 229. 
[20] Panagiotopoulos, A. and Reid, R. C.  (1986). ACS Symp. Ser., 300, 571. 
[21] Ortega, J. and Calvin, S. (1995). J .  Chem. Eng. Data, 40, 699. 
[22] Tassios, D.  P. (1993). “Applied Chemical Engineering Thermodynamics”, Springer 

Verlag, Berlin. 
[23] Gtnehling, J.. Christensen, C., Holderbaum, Th., Rasmussen, P. and Weidlich, U. 

( 1  984). “Heats of Mixing Data Collection. DECHEMA Chemistry Data Series”, 
Vol 111, Parts 1 to 4. DECHEMA, Frankfurt. 

[24] Gmehling, J., Onken, U., Arlt, W., Grenzheuser, P.,  Kolbe, B., Rarey, J .  and 
Weidlich, U. ( 1  977). “ Vapor-Liquid Equilibrium Data Collecrion. DECHEMA 
Chemistry Data Series”, Vol I parts 1 to 18. DECHEMA, Frankfurt. 

[25] Van Ness, H. C .  and Mrazek, R. V. (1959). AlChE.1.. 5,  220. 
(261 Barker, J. A .  (1953). Ausrral. J .  Chem., 6, 207. 
[27] Gess, M., Danner, R. and Nagvekar, M.  (1991). “Thermodynamic Analysis of 

Vapor-Liqurd Equilibria: Recommended Mode1.s and a Selected Data Base”, 
DIPPR, AIChE, New York. 

[28] Budantseva, L. S., Lesteva, T. M.  and Nemtsor, M. S .  (1975). Zh. Fiz. Khim., 49, 
260. 

[29] Scatchard, G. and Satkiewicz, F. G. (1964). J .  Am. Chem. Soc., 86, 130. 
[30] Ronc, M.  and Ratcliff, G. R. (1976). Can J .  Chem. Eng., 54, 326. 
[3 I ]  “TRC‘ Thermodynamic Tables Hydrocarbons”, Thrrmodynamics Research Center, 

The Texas A and M University System, College Station, TX, 1994. 
[32] Hayden, J. and O’Connell, J .  (1975). Ind. Eng. Chem. Process Des. Dev., 14, 209. 
[33] Tsonopoulos, C. (1974). AlChE J . ,  20, 263. 
[34] Costa-Lopez, R., Garvin, A. and Espana, F. (1995). J .  Chem. Eng. Data, 40, 1067. 
[35] Walas, S. (1 985). “Phase Equilibria in Chemical Engineering”, Butterworth, Boston. 
[36] Edgar, T.  F. and Himmelblau, D. M. (1988). “Optimization of Chemical 

Processes”, McG‘raw~-Hill, New York. 
[37] Prausnitz, J . ,  Anderson, T., Grens, E., Eckert, C., Hsieh, R. and O’Connell, J .  

( 1  980). “Computer Calculations for Multicomponent Vapor Liquid and Liquid- 
Liquid Equilibria”, Prentice-Hall, New Jersey. 

[38] Tomiska. J .  (1984). CALPHAD, 4, 283. 
[39] Hiaki, T., Takahashi, K., Tsuji, T., Hongo, M .  and Kojima, K. (1995). J .  Chem. 

Eng. Data, 40, 271. 
[40] Spencer, C. F. and Danner, R. P. (1973). J .  Chem. Eng. Data, 18, 230. 
[41] Wilson, G. M. (1964). J .  Am. Chem. Soc., 86, 127. 
[42] Larsen, B., Rasmussen, P. and Fredenslund, Aa. (1987). Ind. Eng. Chem. Res., 26, 

2274. 
[43] Gmehling, J., Li, J .  and Schiller, M. A. (1993). Ind. Eng. Chem. Res., 32, 178. 
[44] Ninov, J., Stefanova, T. and Petrov, P. (1995). J .  Chem. Eng. Data., 40, 199. 
[45] Renon, H.  and Prausnitz, J. M. (1968). AIChE J . ,  14, 135. 
[46] Hiaki, T., Takahashi, K.. Tsuji, T., Hongo, M .  and Kojima, K .  (1995). J .  Chem. 

Eng. Data, 40, 274. 
[47] Koerts, J .  and Abrahamse, A. P. J .  (1971). “On the Theory and Application oJrhe 

General Linear Model”, Rotterdam University Press, Netherlands. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
0
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



56 J. WISNIAK cr al. 

1481 Mixon, F. O., Gumowski, B. and Carpenter, B. H. (1965). Ind. Eng. Chem. 
Fundum., 4, 455. 

1491 Sayegh, S. G .  and Vera, J .  H. (1980). Chem. Eng. S(,i., 35, 2247. 
1501 Anderson, T. F., Abrdins, D. S. and Grens, E. A. (1978). AlChE J . ,  24, 20. 

APPENDIX A 

Data for a fictitious experimental system 
A regular solution model is assumed 

where A =  1.95, P?' = 105.0 kPa, P y t  = 136.5 kPa. The following 
random perturbations have been considered 

10.008 10.00 I fO.0 I0 &O.OOO 

The perturbation in the A term takes into account an imperfect control 
of temperature and a systematic error or -1.5 kPa in the measure of 
pressure. Fictitious data are given in Table A. 1. 

P(kPa)  .x I Yl P(kPa) XI Yl 

155.28 
169.44 
179.08 
185.50 
189.68 
192.30 
193.82 
194.58 
194.99 
195.15 
195.12 
195.10 

0.0400 
0.0800 
0.1200 
0.1600 
0.2000 
0.2400 
0.2800 
0.3200 
0.3600 
0.4000 
0.4400 
0.4800 

0.1690 
0.2521 
0.3230 
0.3540 
0.3820 
0.3992 
0.4066 
0.4231 
0.4297 
0.4238 
0.4384 
0.4283 

195.1 I 
194.98 
194.74 
194.19 
193.32 
191.64 
188.84 
184.41 
177.61 
167.72 
153.19 
132.55 

0.5200 
0.5600 
0.6000 
0.6400 
0.6800 
0.7200 
0.7600 
0.8000 
0.8400 
0.8800 
0.9200 
0.9600 

0.4382 
0.4407 
0.4415 
0.4360 
0.4529 
0.4489 
0.47 I2 
0.4888 
0.5205 
0.5573 
0.6377 
0.7561 
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APPENDIX R 

Some elements of non-linear least squares procedures used in this 
work. 

The non-linear least square fit problem is given by the iterative 
solution of the following matrix formula equation 

- -  - L( / ’ )AA(”)  = - bf(”) (9.1) 

In Eq. (B.l) h is an iterative index which indicates that all the 
matrixes are evaluated with the parameters achieved in an  iteration I?, 
- L is a matrix of dimension N,, x N,,,  where N/ ,  is the number of 
parameters of a n  activity coefficient model. The matrix elements of I- - 
are calculated as follows 

where N,/ is the number of experimental points, A ,  designates the 
parameters of the model and A d  is a column vector of dimension 
N p  x 1 defined, for sequential iterations, as follows. 

&f is a column vector of dimension N/,  x 1 defined as follows 
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E . .  Given a G , initial estimates of the A parameters, and the experimental 
data, each derivative dP,,l,/dA is taken analytically from Eq. (23) .  
Then the elements of the L and M matrixes can be evaluated from Eqs. 
(B.2) and (B.4). From-Eq. (B.3), new parameter estimates for 
sequential iterations are generated using 

When the iterative procedure converges AA@) will tend to the null 
vector particularly, the norm of Ad@) can be used as a convergence 
criteria. For the solution each element of the column vector in Eq. 
(B.4) must be zero for the optimal parameters, in the sense of the 
objective function in Eq. (25 ) .  
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